Difficulties of T1 brain MRI segmentation techniques

نویسندگان

  • M S. Atkins
  • K. Siu
  • B. Law
  • J. Orchard
  • W. Rosenbaum
چکیده

This paper looks at the difficulties that can confound published T1-weighted Magnetic Resonance Imaging (MRI) brain segmentation methods, and compares their strengths and weaknesses. Using data from the Internet Brain Segmentation Repository (IBSR) as a "gold standard", we ran three different segmentation methods with and without correcting for intensity inhomogeneity. We then calculated the similarity index between the brain masks produced by the segmentation methods and the mask provided by the IBSR. The intensity histograms under the segmented masks were also analyzed to see if a Bi-Gaussian model could be fit onto T1 brain data. Contrary to our initial beliefs, our study found that intensity based T1-weighted segmentation methods were comparable or even superior to, methods utilizing spatial information. All methods appear to have parameters that need adjustment depending on the data set used. Furthermore, it seems that the methods we tested for intensity inhomogeneity did not improve the segmentations due to the nature of the IBSR data set.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI

Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...

متن کامل

A hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI

Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...

متن کامل

Improving Brain Magnetic Resonance Image (MRI) Segmentation via a Novel Algorithm based on Genetic and Regional Growth

Background: Regarding the importance of right diagnosis in medical applications, various methods have been exploited for processing medical images solar. The method of segmentation is used to analyze anal to miscall structures in medical imaging.Objective: This study describes a new method for brain Magnetic Resonance Image (MRI) segmentation via a novel algorithm based on genetic and regiona...

متن کامل

A Survey on MRI based automated Brain Tumor Segmentation Techniques

Manual brain tumor segmentation of brain tumors from MRI is a challenging and time consuming task. Brain tumors are very difficult to segment because they have a wide range of appearance and effect on surrounding structures. Brain tumors generallyvary in size, position and image intensities (such T1 intensity, T2 intensity etc.) as seen in MRI. MRI images have overlapping intensities with norma...

متن کامل

A Novel Fuzzy-C Means Image Segmentation Model for MRI Brain Tumor Diagnosis

Accurate segmentation of brain tumor plays a key role in the diagnosis of brain tumor. Preset and precise diagnosis of Magnetic Resonance Imaging (MRI) brain tumor is enormously significant for medical analysis. During the last years many methods have been proposed. In this research, a novel fuzzy approach has been proposed to classify a given MRI brain image as normal or cancer label and the i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002